New Views on Extrasolar Planetary Systems from *Kepler* Dan Fabrycky UC Santa Cruz Jack Lissauer, Josh Carter, Matthew Holman, Darin Ragozzine Jason Rowe, Bill Cochran, Laurance Doyle, and the *Kepler* team #### Outline - Exoplanetary Systems overview - Kepler's haul - Individual Systems: - KOI-730, Kepler-11, -18, and -16 #### Radial Velocity Multiple Planets # Low-mass planets: a different population? #### Resonances ### 55 Cnc b-c | Name | Msin(i) mjupiter ± | Orbital
Period
days ± | Orbital
Eccentricity
± | |----------|--------------------|-----------------------------|------------------------------| | 55 Cnc c | 0.168 | 44.379 | 0.05 | | 55 Cnc b | 0.83 | 14.6513 | 0.016 | Novak, Lai, Lin 2003 see also: Terquem & Papaloizou 2008 # Kepler Mission - NASA, photometry of 150,000 stars - Looking for Earth-like planets in transit - ~40 ppm in 6 hours; 30 minute cadence - 210 days are public! #### Kepler finds Multiplanets (Steffen et al. 2010) Transit search and figures by Jason Rowe #### Numbers of multiplanets: 115 doubles, 45 triples, 8 quaduples, 1 quintuple and 1 sextuple Borucki et al. 2011 Latham, Rowe, Quinn et al. 2011 Lissauer, Ragozzine, Fabrycky et al. 2011 ### Kepler systems | · • • | | |--|-----------------| | • • • | KOI-899 | | • • • | KOI-117 | | | KOI-223 | | | KOI-658 | | | KOI-543 | | | KOI-733 | | | KOI-510 | | | KOI-1163 | | | KOI-952 | | | KOI-663 | | | KOI-534 | | | KOI-800 | | | KOI-248 | | | KOI-756 | | | KOI-676 | | | K0I-220 | | | K0I-880 | | | KOI-941 | | | KOI-1590 | | | KOI-904 | | | K0I-85 | | | KOI-597 | | | KOI-834 | | | KOI-573 | | | KOI-343 | | | KOI-339 | | | KOI-1306 | | | KOI-442 | | | KOI-398 | | | KOI-665 | | | KOI-1475 | | | KOI-377 | | | KOI-481 | | | KOI-938 | | • | KOI-500 | | • • • • • | KOI-936 | | · ———————————————————————————————————— | K(II — 4. II) | ## Kepler Orrery http://www.youtube.com/watch? v=qRJ30fkyiU4 #### Resonance Preference #### Resonance Preference Lissauer, Fabrycky, Ford et al. 2011 ### Kepler-11 parameters | Planet | Period | Radius | Mass | Density | |--------|-----------|-------------------|-----------|-----------| | | (days) | (R _⊕) | (M⊕) | (g/cm³) | | | 10.30375 | 1.97 | 4.3 | 3.1 | | b | ± 0.00016 | ± 0.19 | +2.2,-2.0 | +2.1,-1.5 | | | 13.02502 | 3.15 | 13.5 | 2.3 | | C | ± 0.00008 | ± 0.30 | +4.8,-6.1 | +1.3,-1.1 | | 1631 | 22.68719 | 3.43 | 6.1 | 0.9 | | d | ± 0.00021 | ± 0.32 | +3.1,-1.7 | +0.5,-0.3 | | 71.11 | 31.99590 | 4.52 | 8.4 | 0.5 | | e | ± 0.00028 | ± 0.43 | +2.5,-1.9 | +0.2,-0.2 | | | 46.68876 | 2.61 | 2.3 | 0.7 | | f | ± 0.00074 | ± 0.25 | +2.2,-1.2 | +0.7,-0.4 | | | 118,37774 | 3.66 | | | | g | ± 0.00112 | ± 0.35 | < 300 | | Image: NASA/Pyle #### Kepler-18 Kepler-18b, c, and d: A SYSTEM OF THREE PLANETS CONFIRMED BY TRANSIT TIMING VARIATIONS, LIGHTCURVE VALIDATION, Warm-Spitzer PHOTOMETRY AND RADIAL VELOCITY MEASUREMENTS William D. Cochran¹, Daniel C. Fabrycky², Guillermo Torres³, François Fressin³, Jean-Michel Désert³, Darin Ragozzine³, Dimitar Sasselov³, Jonathan J. Fortney², Jason F. Rowe⁴, Erik J. Brugamyer⁵, Stephen T. Bryson⁴, Joshua A. Carter³, David R. Ciardi⁶, Steve B. Howell⁴, Jason H. Steffen⁷, William. J. Borucki⁴, David G. Koch⁴, Joshua N. Winn⁸, William F. Welsh⁹, Kamal Uddin^{10,4}, Peter Tenenbaum^{15,4}, M. Still^{11,4}, Sara Seager⁸, Samuel N. Quinn³, F. Mullally^{15,4}, Neil Miller², Geoffrey W. Marcy¹², Phillip J. MacQueen¹, Philip Lucas¹³, Jack J. Lissauer⁴, David W. Latham³, Heather Knutson¹², K. Kinemuchi^{11,4}, John A. Johnson¹⁴, Jon M. Jenkins^{15,4}, Howard Isaacson¹², Andrew Howard¹², Elliott Horch¹⁶, Matthew J. Holman³, Christopher E. Henze⁴, Michael R. Haas⁴, Ronald L. Gilliland¹⁷, Thomas N. Gautier III¹⁸, Eric B. Ford¹⁹, Debra A. Fischer²⁰, Mark Everett²¹, Michael Endl¹, Brice-Oliver Demory⁸, Drake Deming²², David Charbonneau³, Douglas Caldwell^{15,4}, Lars Buchhave^{23,24}, Timothy M. Brown²⁵, and Natalie Batalha²⁶ ApJS in press | Planet | Period (days) | Mass
(M _{Earth}) | |--------|---------------|-------------------------------| | b | 3.5 | 12 ± 5 | | С | 7.6 | 15 ± 5 | | d | 14.9 | 28 ± 7 | P/P=1.944 ~= 2/1 "Great Inequality" frequency: $f_{GE}=2/P-1/P$ $= 0.0037 d^{-1}$ or 270 days The Great Inequality is observed! ### Kepler-18 tests TTV masses | Planet | Period
(days) | RV Mass
(M _{Earth}) | TTV Mass (M _{Earth}) | |--------|------------------|----------------------------------|--------------------------------| | b | 3.5 | 12 ± 5 | 18 ± 9 | | С | 7.6 | 15 ± 5 | 17.3 ± 1.7 | | d | 14.9 | 28 ± 7 | 15.8 ± 1.3 | #### Planets in Binaries ~50 systems known, via Doppler plus imaging follow-up But can we find planets orbiting both stars? #### Kepler-16(AB)b - http://www.youtube.com/watch? v=0MfRo0eC1ks - http://www.youtube.com/watch? v=AaE0KK7m3VA credit: Tim Pyle (NASA) # **Kepler-16: A Transiting Circumbinary Planet** Laurance R. Doyle, ^{1*} Joshua A. Carter, ² Daniel C. Fabrycky, ³ Robert W. Slawson, ¹ Steve B. Howell, ⁴ Joshua N. Winn, ⁵ Jerome A. Orosz, ⁶ Andrej Pr sa, ⁷ William F. Welsh, ⁶ Samuel N. Quinn, ⁸ David Latham, ⁸ Guillermo Torres, ⁸ Lars A. Buchhave, ^{9,19} Geoffrey W. Marcy, ¹¹ Jonathan J. Fortney, ¹² Avi Shporer, ^{13,14} Eric B. Ford, ¹⁵ Jack J. Lissauer, ⁴ Darin Ragozzine, ² Michael Rucker, ¹⁶ Natalie Batalha, ¹⁶ Jon M. Jenkins, ¹ William J. Borucki, ⁴ David Koch, ⁴ Christopher K. Middour, ¹⁷ Jennifer R. Hall, ¹⁷ Sean McCauliff, ¹⁷ Michael N. Fanelli, ¹⁸ Elisa V. Quintana, ¹ Matthew J. Holman, ⁸ Douglas A. Caldwell, ¹ Martin Still, ¹⁸ Robert P. Stefanik, ⁸ Warren R. Brown, ⁸ Gilbert A. Esquerdo, ⁸ Sumin Tang, ⁸ Gabor Furesz, ^{8,10} John C. Geary, ⁸ Perry Berlind, ²⁰ Michael L. Calkins, ²⁰ Donald R. Short, ²¹ Jason H. Steffen, ²² Dimitar Sasselov, ⁸ Edward W. Dunham, ²³ William D. Cochran, ²⁴ Alan Boss, ²⁵ Michael R. Haas, ⁴ Derek Buzasi, ²⁶ Debra Fischer ²⁷ #### The mass of b? #### **Eclipse Timing Variations** ~1 minute scale \rightarrow ~1 M_{Saturn} / M_{Sun} #### Accurate Masses and Radii | 111 | Parameter | Value and Uncertainty | |-------|--|---------------------------------| | | Star A | | | 0.50% | Mass, M_A (M_{\odot}) | $0.6897^{+0.0035}_{-0.0034}$ | | 0.20% | Radius, $R_A(R_{\odot})$ | $0.6489^{+0.0013}_{-0.0013}$ | | | Mean Density, ρ_A (g cm ⁻³) | 3.563+0.017 | | A C | Surface Gravity, $\log g_A$ (cgs) | $4.6527^{+0.0017}_{-0.0016}$ | | Y 4.1 | Effective Temperature, T_{cff} (K) | 4450 ± 150 | | - 1 | Metallicity, [m/H] | -0.3 ± 0.2 | | | Star B | | | 0.33% | Mass, M_B (M_{\odot}) | $0.20255^{+0.00066}_{-0.00065}$ | | 0.26% | Radius, $R_B(R_{\odot})$ | $0.22623^{+0.00059}_{-0.00053}$ | | - | Mean Density, ρ_B (g cm ⁻³) | 24.69+0.13 | | | Surface Gravity, log g _B (cgs) | $5.0358^{+0.0014}_{-0.0017}$ | | | Planet b | | | 4.8% | Mass, M_b (M_{Jupiter}) | $0.333^{+0.016}_{-0.016}$ | | | Radius, R_b (R_{Jupiter}) | $0.7538^{+0.0026}_{-0.0023}$ | | | Mean Density, ρ_b (g cm ⁻²) | $0.964^{+0.047}_{-0.046}$ | | | Surface Gravity, gh (m s ⁻²) | $14.52^{+0.70}_{-0.69}$ | #### and that's not all... Winn et al. Spin-orbit measurement: λ=1.6°±2.4° #### New Views of Exoplanets from Kepler #### Precision period ratios of transiting planets Information on migration at an early epoch #### Timing Variations of transiting planets - Nails down the properties of multiply-eclipsing systems - The best hope for confirming habitable planets #### Planets around binaries First solid detection: a transiting example # KOI-126: A Triply Eclipsing Hierarchical Triple with Two Low-Mass Stars Carter, Fabrycky, Ragozzine et al. 2011, Science $P_1 = 1.77 \text{ d}, P_2 = 33.9 \text{ d}$ $i_{\text{mutual}} = 9.2^{\circ}, \text{ oscillating by } 0.4^{\circ}$